Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Sci Rep ; 13(1): 10820, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402816

RESUMO

Escape mutations in the spike protein of SARS-CoV-2 are a major reason for Omicron breakthrough infections. After basal vaccination only very low titers of Omicron neutralizing antibodies are present. However, booster vaccinations induce higher titers against the Omicron variant. The neutralization of the Delta and Omicron variants by sera obtained 6 months after 3rd vaccination and 2 weeks or 6 months after 4th vaccination with a monovalent RNA vaccine (Spikevax) was analyzed. It was observed for the Omicron variant that 6 months after the fourth vaccination, the titer returns to the same very low neutralizing capacity as 6 months after the third vaccination. The Delta variant neutralizing capacity wanes with a comparable kinetic although the titers are higher as compared to the Omicron variant. This indicates that the fourth vaccination with a monovalent vaccine based on the ancestral isolate neither affects the kinetic of the waning nor the breadth of the humoral response.


Assuntos
COVID-19 , Imunidade Humoral , Humanos , COVID-19/prevenção & controle , SARS-CoV-2/genética , Vacinação , Anticorpos Neutralizantes , Anticorpos Antivirais
2.
Cell Chem Biol ; 30(10): 1277-1294.e12, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37473760

RESUMO

Nitro-fatty acids (NFAs) are endogenous lipid mediators causing a spectrum of anti-inflammatory effects by covalent modification of key proteins within inflammatory signaling pathways. Recent animal models of solid tumors have helped demonstrate their potential as anti-tumorigenic therapeutics. This study evaluated the anti-tumorigenic effects of NFAs in colon carcinoma cells and other solid and leukemic tumor cell lines. NFAs inhibited the ubiquitin-proteasome system (UPS) by directly targeting the 26S proteasome, leading to polyubiquitination and inhibition of the proteasome activities. UPS suppression induced the unfolded protein response, resulting in tumor cell death. The NFA-mediated effects were substantial, specific, and enduring, representing a unique mode of action for UPS suppression. This study provides mechanistic insights into the biological actions of NFAs as possible endogenous tumor-suppressive factors, indicating that NFAs might be key structures for designing a novel class of direct proteasome inhibitors.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ácidos Graxos/farmacologia , Inibidores de Proteassoma/farmacologia
3.
Cell Biosci ; 12(1): 182, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348448

RESUMO

BACKGROUND: Semaphorins (Sema) belong to a large family of repellent guidance cues instrumental in guiding axons during development. In particular, Class 3 Sema (Sema 3) is among the best characterized Sema family members and the only produced as secreted proteins in mammals, thereby exerting both autocrine and paracrine functions. Intriguingly, an increasing number of studies supports the crucial role of the Sema 3A in hippocampal and cortical neurodevelopment. This means that alterations in Sema 3A signaling might compromise hippocampal and cortical circuits and predispose to disorders such as autism and schizophrenia. Consistently, increased Sema 3A levels have been detected in brain of patients with schizophrenia and many polymorphisms in Sema 3A or in the Sema 3A receptors, Neuropilins (Npn 1 and 2) and Plexin As (Plxn As), have been associated to autism. RESULTS: Here we present data indicating that when overexpressed, Sema 3A causes human neural progenitors (NP) axonal retraction and an aberrant dendritic arborization. Similarly, Sema 3A, when overexpressed in human microglia, triggers proinflammatory processes that are highly detrimental to themselves as well as NP. Indeed, NP incubated in microglia overexpressing Sema 3A media retract axons within an hour and then start suffering and finally die. Sema 3A mediated retraction appears to be related to its binding to Npn 1 and Plxn A2 receptors, thus activating the downstream Fyn tyrosine kinase pathway that promotes the threonine-serine kinase cyclin-dependent kinase 5, CDK5, phosphorylation at the Tyr15 residue and the CDK5 processing to generate the active fragment p35. CONCLUSIONS: All together this study identifies Sema 3A as a critical regulator of human NP differentiation. This may imply that an insult due to Sema 3A overexpression during the early phases of neuronal development might compromise neuronal organization and connectivity and make neurons perhaps more vulnerable to other insults across their lifespan.

4.
Medicina (Kaunas) ; 58(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36295514

RESUMO

The cyst of the canal of Nuck is an extremely rare female hydrocele, usually occurring in children, but also in adult women. It is caused by pathology of the canal of Nuck, which is the female equivalent to the male processus vaginalis. Due to its rarity and the lack of awareness among physicians, the cyst of the canal of Nuck is a seldom-encountered entity in clinical practice and is commonly misdiagnosed. We report on a case of cyst of the canal of Nuck in a 42-year-old woman, who presented with a painful swelling at her right groin. In addition, we conducted a review of the current available literature. This review gives an overview of the anatomy, pathology, diagnostics, and treatment of the cyst of the canal of Nuck. The aim of this review is not only to give a survey, but also to raise awareness of the cyst of the canal of Nuck and serve as a reference for medical professionals.


Assuntos
Cistos , Canal Inguinal , Humanos , Adulto , Criança , Feminino , Masculino , Canal Inguinal/patologia , Cistos/diagnóstico por imagem , Cistos/cirurgia , Peritônio , Edema , Dor
5.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012587

RESUMO

The biomedical consequences of allogeneic blood transfusions and the possible pathomechanisms of transfusion-related morbidity and mortality are still not entirely understood. In retrospective studies, allogeneic transfusion was associated with increased rates of cancer recurrence, metastasis and death in patients with colorectal cancer. However, correlation does not imply causation. The purpose of this study was to elucidate this empirical observation further in order to address insecurity among patients and clinicians. We focused on the in vitro effect of microparticles derived from red blood cell units (RMPs). We incubated different colon carcinoma cells with RMPs and analyzed their effects on growth, invasion, migration and tumor marker expression. Furthermore, effects on Wnt, Akt and ERK signaling were explored. Our results show RMPs do not seem to affect functional and phenotypic characteristics of different colon carcinoma cells and did not induce or inhibit Wnt, Akt or ERK signaling, albeit in cell culture models lacking tumor microenvironment. Allogeneic blood transfusions are associated with poor prognosis, but RMPs do not seem to convey tumor-enhancing effects. Most likely, the circumstances that necessitate the transfusion, such as preoperative anemia, tumor stage, perioperative blood loss and extension of surgery, take center stage.


Assuntos
Carcinoma , Micropartículas Derivadas de Células , Neoplasias do Colo , Carcinoma/complicações , Micropartículas Derivadas de Células/patologia , Neoplasias do Colo/patologia , Humanos , Recidiva Local de Neoplasia/etiologia , Proteínas Proto-Oncogênicas c-akt , Estudos Retrospectivos , Microambiente Tumoral
6.
Vaccines (Basel) ; 10(5)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35632550

RESUMO

The SARS-CoV-2 variant Omicron has spread world-wide and is responsible for rapid increases in infections, including in populations with high vaccination rates. Here, we analysed in the sera of vaccinated individuals the antibody binding to the receptor-binding domain (RBD) of the spike protein and the neutralization of wild-type (WT), Delta (B.1.617.2), and Omicron (B.1.1.529; BA.1) pseudotyped vectors. Although sera from individuals immunized with vector vaccines (Vaxzevria; AZ and COVID-19 Janssen, Ad26.COV2.S; J&J) were able to bind and neutralize WT and Delta, they showed only background levels towards Omicron. In contrast, mRNA (Comirnaty; BNT) or heterologous (AZ/BNT) vaccines induced weak, but detectable responses against Omicron. While RBD-binding antibody levels decreased significantly six months after full vaccination, the SARS-CoV-2 RBD-directed avidity remained constant. However, this still coincided with a significant decrease in neutralization activity against all variants. A third booster vaccination with BNT significantly increased the humoral immune responses against all tested variants, including Omicron. In conclusion, only vaccination schedules that included at least one dose of mRNA vaccine and especially an mRNA booster vaccination induced sufficient antibody levels with neutralization capacity against multiple variants, including Omicron.

7.
Vaccines (Basel) ; 10(5)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35632552

RESUMO

Waning immunity against SARS-CoV-2 and the emergence of variants, especially of the most distant variant, Omicron, affect titers of neutralizing antibodies in the sera of vaccinated individuals. Thus, two vaccinations with the mRNA vaccine BNT162b fail to induce neutralizing antibodies against the Omicron variant. A first booster vaccination increases Omicron-RBD-binding IgG and IgA and neutralizing capacity. In comparison, the Wuhan isolate titers of the Omicron variant binding antibodies are 8.5 lower. After a third vaccination, induction of Omicron-RBD- and Wuhan-RBD-binding antibodies follows the same kinetic. Five to six months after the third vaccination, there are still Omicron-RBD-binding antibodies detectable, but 35.9 percent of the analyzed sera fail to neutralize the Omicron variant, while all sera efficiently neutralize the Delta isolate. In the case of the Wuhan-RBD, a significantly larger number of stable antigen-antibody complexes is formed than in Omicron-RBD. A fourth vaccination with mRNA-1273 temporarily restores levels of Omicron-, Delta- and Wuhan-specific antibodies. Comparing different booster strategies revealed that the breadth of the immune response is not affected by the vaccination regimen. Taken together, these data indicate that booster vaccinations (third and fourth dose) increase the breadth of the immune response, but there is a qualitative difference of antibodies with respect to the stability of antigen-antibody complexes and persistence of antibody titers.

8.
Allergy ; 77(7): 2053-2066, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34637150

RESUMO

BACKGROUND: People suffering from COVID-19 are typically considered non-infectious 14 days after diagnosis if symptoms have disappeared for at least 48 h. We describe three patients who independently acquired their infection. These three patients experienced mild COVID-19 and completely recovered symptomatically within 10 days, but remained PCR-positive in deep pharyngeal samples for at least 38 days. We attempted to isolate virus from pharyngeal swabs to investigate whether these patients still carried infectious virus. METHODS: Infectious virus was amplified in Vero E6 cells and characterized by electron microscopy and WGS. The immune response was investigated by ELISA and peptide arrays. RESULTS: In all three cases, infectious and replication-competent virus was isolated and amplified in Vero E6 cells. Virus replication was detected by RT-PCR and immunofluorescence microscopy. Electron microscopy confirmed the formation of intact SARS-CoV-2 particles. For a more detailed analysis, all three isolates were characterized by whole-genome sequencing (WGS). The sequence data revealed that the isolates belonged to the 20A or 20C clade, and two mutations in ORF8 were identified among other mutations that could be relevant for establishing a long-term infection. Characterization of the humoral immune response in comparison to patients that had fully recovered from mild COVID-19 revealed a lack of antibodies binding to sequential epitopes of the receptor-binding domain (RBD) for the long-term infected patients. CONCLUSION: Thus, a small portion of COVID-19 patients displays long-term infectivity and termination of quarantine periods after 14 days, without PCR-based testing, should be reconsidered critically.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Replicação Viral
9.
J Clin Virol ; 146: 105052, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34920374

RESUMO

BACKGROUND: Antibody detection of SARS-CoV-2 requires an understanding of its variation, course, and duration. METHODS: Antibody response to SARS-CoV-2 was evaluated over 5-430 days on 828 samples across COVID-19 severity levels, for total antibody (TAb), IgG, IgA, IgM, neutralizing antibody (NAb), antibody avidity, and for receptor-binding-domain (RBD), spike (S), or nucleoprotein (N). Specificity was determined on 676 pre-pandemic samples. RESULTS: Sensitivity at 30-60 days post symptom onset (pso) for TAb-S/RBD, TAb-N, IgG-S, IgG-N, IgA-S, IgM-RBD, and NAb was 96.6%, 99.5%, 89.7%, 94.3%, 80.9%, 76.9% and 92.8%, respectively. Follow-up 430 days pso revealed: TAb-S/RBD increased slightly (100.0%); TAb-N decreased slightly (97.1%); IgG-S and IgA-S decreased moderately (81.4%, 65.7%); NAb remained positive (94.3%), slightly decreasing in activity after 300 days; there was correlation with IgG-S (Rs = 0.88) and IgA-S (Rs = 0.71); IgG-N decreased significantly from day 120 (15.7%); IgM-RBD dropped after 30-60 days (22.9%). High antibody avidity developed against S/RBD steadily with time in 94.3% of patients after 430 days. This correlated with persistent antibody detection depending on antibody-binding efficiency of the test design. Severe COVID-19 correlated with earlier and higher antibody response, mild COVID-19 was heterogeneous with a wide range of antibody reactivities. Specificity of the tests was ≥99%, except for IgA (96%). CONCLUSION: Sensitivity of anti-SARS-CoV-2 assays was determined by test design, target antigen, antibody avidity, and COVID-19 severity. Sustained antibody detection was mainly determined by avidity progression for RBD and S. Testing by TAb and for S/RBD provided the highest sensitivity and longest detection duration of 14 months so far.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , Humanos , Imunoglobulina G , Imunoglobulina M , Cinética , Glicoproteína da Espícula de Coronavírus
10.
Front Pharmacol ; 12: 715076, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867322

RESUMO

Endogenous nitro-fatty acids (NFA) are potent electrophilic lipid mediators that exert biological effects in vitro and in vivo via selective covalent modification of thiol-containing target proteins. The cytoprotective, anti-inflammatory, and anti-tumorigenic effects of NFA in animal models of disease caused by targeted protein nitroalkylation are a valuable basis for the development of future anti-phlogistic and anti-neoplastic drugs. Considering the complexity of diseases and accompanying comorbidities there is an urgent need for clinically effective multifunctional drugs. NFA are composed of a fatty acid backbone containing a nitroalkene moiety triggering Michael addition reactions. However, less is known about the target-specific structure-activity relationships and selectivities comparing different NFA targets. Therefore, we analyzed 15 NFA derivatives and compared them with the lead structure 9-nitro-oleic acid (9NOA) in terms of their effect on NF-κB (nuclear factor kappa B) signaling inhibition, induction of Nrf-2 (nuclear factor erythroid 2-related factor 2) gene expression, sEH (soluble epoxide hydrolase), LO (lipoxygenase), and COX-2 (cyclooxygenase-2) inhibition, and their cytotoxic effects on colorectal cancer cells. Minor modifications of the Michael acceptor position and variation of the chain length led to drugs showing increased target preference or enhanced multi-targeting, partly with higher potency than 9NOA. This study is a significant step forward to better understanding the biology of NFA and their enormous potential as scaffolds for designing future anti-inflammatory drugs.

11.
iScience ; 24(3): 102170, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33585805

RESUMO

Cell entry of the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by its spike protein S. As a main antigenic determinant, S protein is in focus of various therapeutic strategies. Besides particle-cell fusion, S mediates fusion between infected and uninfected cells resulting in syncytia formation. Here, we present sensitive assay systems with a high dynamic range and high signal-to-noise ratios covering not only particle-cell and cell-cell fusion but also fusion from without (FFWO). In FFWO, S-containing viral particles induce syncytia independently of de novo synthesis of S. Neutralizing antibodies, as well as sera from convalescent patients, inhibited particle-cell fusion with high efficiency. Cell-cell fusion, in contrast, was only moderately inhibited despite requiring levels of S protein below the detection limit of flow cytometry and Western blot. The data indicate that syncytia formation as pathological consequence during coronavirus disease 2019 (COVID-19) can proceed at low levels of S protein and may not be effectively prevented by antibodies.

12.
Front Pharmacol ; 12: 782584, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126121

RESUMO

5-Lipoxygenase (5-LO) is the key enzyme in the formation of pro-inflammatory leukotrienes (LT) which play an important role in a number of inflammatory diseases. Accordingly, 5-LO inhibitors are frequently used to study the role of 5-LO and LT in models of inflammation and cancer. Interestingly, the therapeutic efficacy of these inhibitors is highly variable. Here we show that the frequently used 5-LO inhibitors AA-861, BWA4C, C06, CJ-13,610 and the FDA approved compound zileuton as well as the pan-LO inhibitor nordihydroguaiaretic acid interfere with prostaglandin E2 (PGE2) release into the supernatants of cytokine-stimulated (TNFα/IL-1ß) HeLa cervix carcinoma, A549 lung cancer as well as HCA-7 colon carcinoma cells with similar potencies compared to their LT inhibitory activities (IC50 values ranging from 0.1-9.1 µM). In addition, AA-861, BWA4C, CJ-13,610 and zileuton concentration-dependently inhibited bacterial lipopolysaccharide triggered prostaglandin (PG) release into human whole blood. Western Blot analysis revealed that inhibition of expression of enzymes involved in PG synthesis was not part of the underlying mechanism. Also, liberation of arachidonic acid which is the substrate for PG synthesis as well as PGH2 and PGE2 formation were not impaired by the compounds. However, accumulation of intracellular PGE2 was found in the inhibitor treated HeLa cells suggesting inhibition of PG export as major mechanism. Further, experiments showed that the PG exporter ATP-binding cassette transporter multidrug resistance protein 4 (MRP-4) is targeted by the inhibitors and may be involved in the 5-LO inhibitor-mediated PGE2 inhibition. In conclusion, the pharmacological effects of a number of 5-LO inhibitors are compound-specific and involve the potent inhibition of PGE2 export. Results from experimental models on the role of 5-LO in inflammation and pain using 5-LO inhibitors may be misleading and their use as pharmacological tools in experimental models has to be revisited. In addition, 5-LO inhibitors may serve as new scaffolds for the development of potent prostaglandin export inhibitors.

13.
Front Pharmacol ; 11: 1297, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013366

RESUMO

Nitro fatty acids (NFAs) are endogenously generated lipid mediators deriving from reactions of unsaturated electrophilic fatty acids with reactive nitrogen species. Furthermore, Mediterranean diets can be a source of NFA. These highly electrophilic fatty acids can undergo Michael addition reaction with cysteine residues, leading to post-translational modifications (PTM) of selected regulatory proteins. Such modifications are capable of changing target protein function during cell signaling or in biosynthetic pathways. NFA target proteins include the peroxisome proliferator-activated receptor γ (PPAR-γ), the pro-inflammatory and tumorigenic nuclear factor-κB (NF-κB) signaling pathway, the pro-inflammatory 5-lipoxygenases (5-LO) biosynthesis pathway as well as soluble epoxide hydrolase (sEH), which is essentially involved in the regulation of vascular tone. In several animal models of inflammation and cancer, the therapeutic efficacy of well-tolerated NFA has been demonstrated. This has already led to clinical phase II studies investigating possible therapeutic effects of NFA in subjects with pulmonary arterial hypertension. Albeit Michael acceptors feature a broad spectrum of bioactivity, they have for a rather long time been avoided as drug candidates owing to their presumed unselective reactivity and toxicity. However, targeted covalent modification of regulatory proteins by Michael acceptors became recognized as a promising approach to drug discovery with the recent FDA approvals of the cancer therapeutics, afatanib (2013), ibrutinib (2013), and osimertinib (2015). Furthermore, the Michael acceptor, neratinib, a dual inhibitor of the human epidermal growth factor receptor 2 and epidermal growth factor receptor, was recently approved by the FDA (2017) and by the EMA (2018) for the treatment of breast cancer. Finally, a number of further Michael acceptor drug candidates are currently under clinical investigation for pharmacotherapy of inflammation and cancer. In this review, we focus on the pharmacology of NFA and other Michael acceptor drugs, summarizing their potential as an emerging class of future antiphlogistics and adjuvant in tumor therapeutics.

14.
Cells ; 9(8)2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751526

RESUMO

Alzheimer's disease (AD) is an incurable neurodegenerative disorder with a few early detection strategies. We previously proposed the amyloid precursor protein (APP) tyrosine 682 (Tyr682) residue as a valuable target for the development of new innovative pharmacologic or diagnostic interventions in AD. Indeed, when APP is phosphorylated at Tyr682, it is forced into acidic neuronal compartments where it is processed to generate neurotoxic amyloid ß peptides. Of interest, Fyn tyrosine kinase (TK) interaction with APP Tyr682 residue increases in AD neurons. Here we proved that when Fyn TK was overexpressed it elicited APP Tyr682 phosphorylation in neurons from healthy donors and promoted the amyloidogenic APP processing with Aß peptides accumulation and neuronal death. Phosphorylation of APP at Tyr (pAPP-Tyr) increased in neurons of AD patients and AD neurons that exhibited high pAPP-Tyr also had higher Fyn TK activity. Fyn TK inhibition abolished the pAPP-Tyr and reduced Aß42 secretion in AD neurons. In addition, the multidomain adaptor protein Fe65 controlled the Fyn-mediated pAPP-Tyr, warranting the possibility of targeting the Fe65-APP-Fyn pathway to develop innovative strategies in AD. Altogether, these results strongly emphasize the relevance of focusing on pAPP Tyr682 either for diagnostic purposes, as an early biomarker of the disease, or for pharmacological targeting, using Fyn TKI.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Tirosina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Biomarcadores/metabolismo , Células Cultivadas , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Pessoa de Meia-Idade , Células-Tronco Neurais/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-fyn/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-fyn/genética , Transfecção
15.
Front Pharmacol ; 10: 263, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30949053

RESUMO

Cysteinyl leukotriene receptor 1 antagonists (CysLT1RA) are frequently used as add-on medication for the treatment of asthma. Recently, these compounds have shown protective effects in cardiovascular diseases. This prompted us to investigate their influence on soluble epoxide hydrolase (sEH) and peroxisome proliferator activated receptor (PPAR) activities, two targets known to play an important role in CVD and the metabolic syndrome. Montelukast, pranlukast and zafirlukast inhibited human sEH with IC50 values of 1.9, 14.1, and 0.8 µM, respectively. In contrast, only montelukast and zafirlukast activated PPARγ in the reporter gene assay with EC50 values of 1.17 µM (21.9% max. activation) and 2.49 µM (148% max. activation), respectively. PPARα and δ were not affected by any of the compounds. The activation of PPARγ was further investigated in 3T3-L1 adipocytes. Analysis of lipid accumulation, mRNA and protein expression of target genes as well as PPARγ phosphorylation revealed that montelukast was not able to induce adipocyte differentiation. In contrast, zafirlukast triggered moderate lipid accumulation compared to rosiglitazone and upregulated PPARγ target genes. In addition, we found that montelukast and zafirlukast display antagonistic activities concerning recruitment of the PPARγ cofactor CBP upon ligand binding suggesting that both compounds act as PPARγ modulators. In addition, zafirlukast impaired the TNFα triggered phosphorylation of PPARγ2 on serine 273. Thus, zafirlukast is a novel dual sEH/PPARγ modulator representing an excellent starting point for the further development of this compound class.

16.
Cell Tissue Res ; 378(1): 143-154, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30989399

RESUMO

It is well known that sepsis and inflammation reduce male fertility. Within the testis, toll-like receptor 3 (TLR3) is constitutively expressed and recognizes double-stranded RNA (dsRNA) from viruses, degraded bacteria, damaged tissues and necrotic cells. To characterize the potential role of TLR3 in response to testicular infections, its expression and downstream signaling were investigated upon challenge with lipopolysaccharides (LPS) in two mouse strains that differ in their immuno-competence regarding T cell-regulated immunity. Thereto, Balb/c and Foxn1nu mice were randomized into six interventional groups treated with either i.v. application of saline or LPS followed by 20 min, 5 h 30 min and 18 h of observation and two sham-treated control groups. LPS administration induced a significant stress response; the amplification was manifested for TLR3 and interleukin 6 (IL6) mRNA in the impaired testis 5 h 30 min after LPS injection. TLR3 immunostaining revealed that TLR3 was primarily localized in spermatocytes. The TLR3 expression displayed different temporal dynamics between both mouse strains. However, immunofluorescence staining indicated only punctual interferon regulatory factor 3 (IRF3) expression upon LPS treatment along with minor alterations in interferon ß (IFNß) mRNA expression. Induction of acute inflammation was closely followed by a significant shift of the Bax/Bcl2 ratio to pro-apoptotic signaling accompanied by augmented TUNEL-positive cells 18 h after LPS injection with again differing patterns in both mouse strains. In conclusion, this study shows the involvement of TLR3 in response to LPS-induced testicular inflammation in immuno-competent and -incompetent mice, yet lacking transmission into its signaling pathway.


Assuntos
Apoptose/imunologia , Orquite/imunologia , Espermatócitos/imunologia , Testículo/metabolismo , Receptor 3 Toll-Like/imunologia , Animais , Fator Regulador 3 de Interferon/imunologia , Interferon beta/imunologia , Lipopolissacarídeos/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Orquite/induzido quimicamente , Espermatócitos/citologia , Testículo/patologia
17.
Rapid Commun Mass Spectrom ; 33 Suppl 1: 40-49, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29964304

RESUMO

RATIONALE: Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of covalent 5-lipoxygenase inhibitors is challenging due to unknown amino acid specificity and low posttranslational modification (PTM)-identification rates. The analysis of the amino-acid specificity and of the characteristic fragmentation of chemically modified peptides is considered to improve knowledge for the analysis of chemically modified peptides and proteins by MALDI-MS. METHODS: Various compounds were used to investigate the modification of synthetic peptides carrying reactive amino acid residues. Mass spectra were recorded using a MALDI-LTQ Orbitrap XL for high-resolution mass spectrometry and ion trap MALDI-MS2 . UV-Vis-based reduction and radical scavenging analysis was conducted. The on-plate digestion method described by Rühl et al was utilized for modification-site analysis at 5-lipoxygenase. RESULTS: The analysis of amino-acid-specific reactivity revealed the reactivity of quinones towards cysteine residues and the potential occurrence of a subsequent oxidative process was observed by an UV-Vis-based reduction assay. MALDI collision-induced dissociation tandem mass spectrometry (CID-MS2 ) indicated a prominent fragmentation mechanism of modified cysteine and histidine residues. Fragmentation included highly abundant neutral-loss signals which could be used to identify new modifications induced by chemical modifiers at the cysteine-159 residue of 5-lipoxygenase. CONCLUSIONS: Specificity and fragmentation analysis provides crucial information for the analysis of chemically modified cysteines and histidines by MALDI-MS. Elucidation of binding sites by MALDI-MS has been significantly improved using an easy-to-run peptide assay and gives background information for the analysis in the case of chemically modified 5-lipoxygenase.


Assuntos
Peptídeos/química , Proteínas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Sítios de Ligação , Cisteína/análise , Cisteína/química , Cisteína/metabolismo , Histidina/análise , Histidina/química , Histidina/metabolismo , Lipoxigenase , Inibidores de Lipoxigenase , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Peptídeos/análise , Peptídeos/metabolismo , Ligação Proteica , Proteínas/análise , Proteínas/metabolismo , Quinonas/química
18.
FASEB J ; 33(2): 1711-1726, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30188757

RESUMO

Sphingosine-1-phosphate (S1P) is involved in the regulation of important cellular processes, including immune-cell trafficking and proliferation. Altered S1P signaling is strongly associated with inflammation, cancer progression, and atherosclerosis; however, the mechanisms underlying its pathophysiologic effects are only partially understood. This study evaluated the effects of S1P in vitro and in vivo on the biosynthesis of leukotrienes (LTs), which form a class of lipid mediators involved in the pathogenesis of inflammatory diseases. Here, we report for the first time that S1P potently suppresses LT biosynthesis in Ca2+-ionophore-stimulated intact human neutrophils. S1P treatment resulted in intracellular Ca2+ mobilization, perinuclear translocation, and finally irreversible suicide inactivation of the LT biosynthesis key enzyme 5-lipoxygenase (5-LO). Agonist studies and S1P receptor mRNA expression analysis provided evidence for a S1P receptor 4-mediated effect, which was confirmed by a functional knockout of S1P4 in HL60 cells. Systemic administration of S1P in wild-type mice decreased both macrophage and neutrophil migration in the lungs in response to LPS and significantly attenuated 5-LO product formation, whereas these effects were abrogated in 5-LO or S1P4 knockout mice. In summary, targeting the 5-LO pathway is an important mechanism to explain S1P-mediated pathophysiologic effects. Furthermore, agonism at S1P4 represents a novel effective strategy in pharmacotherapy of inflammation.-Fettel, J., Kühn, B., Guillen, N. A., Sürün, D., Peters, M., Bauer, R., Angioni, C., Geisslinger, G., Schnütgen, F., Meyer zu Heringdorf, D., Werz, O., Meybohm, P., Zacharowski, K., Steinhilber, D., Roos, J., Maier, T. J. Sphingosine-1-phosphate (S1P) induces potent anti-inflammatory effects in vitro and in vivo by S1P receptor 4-mediated suppression of 5-lipoxygenase activity.


Assuntos
Anti-Inflamatórios/farmacologia , Araquidonato 5-Lipoxigenase/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Receptores de Lisoesfingolipídeo/fisiologia , Esfingosina/análogos & derivados , Animais , Araquidonato 5-Lipoxigenase/biossíntese , Araquidonato 5-Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Cálcio/metabolismo , Linhagem Celular , Feminino , Humanos , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/enzimologia , Neutrófilos/metabolismo , Pneumonia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Esfingosina/metabolismo , Esfingosina/farmacologia , Especificidade por Substrato
19.
Cell Chem Biol ; 25(9): 1095-1106.e23, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30251630

RESUMO

Identification and validation of the targets of bioactive small molecules identified in cell-based screening is challenging and often meets with failure, calling for the development of new methodology. We demonstrate that a combination of chemical proteomics with in silico target prediction employing the SPiDER method may provide efficient guidance for target candidate selection and prioritization for experimental in-depth evaluation. We identify 5-lipoxygenase (5-LO) as the target of the Wnt pathway inhibitor Lipoxygenin. Lipoxygenin is a non-redox 5-LO inhibitor, modulates the ß-catenin-5-LO complex and induces reduction of both ß-catenin and 5-LO levels in the nucleus. Lipoxygenin and the structurally unrelated 5-LO inhibitor CJ-13,610 promote cardiac differentiation of human induced pluripotent stem cells and inhibit Hedgehog, TGF-ß, BMP, and Activin A signaling, suggesting an unexpected and yet unknown role of 5-LO in these developmental pathways.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/farmacologia , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Simulação por Computador , Desenho Assistido por Computador , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Células NIH 3T3 , Via de Sinalização Wnt/efeitos dos fármacos
20.
Proc Natl Acad Sci U S A ; 115(33): E7768-E7775, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30061387

RESUMO

The adaptor molecule stimulator of IFN genes (STING) is central to production of type I IFNs in response to infection with DNA viruses and to presence of host DNA in the cytosol. Excessive release of type I IFNs through STING-dependent mechanisms has emerged as a central driver of several interferonopathies, including systemic lupus erythematosus (SLE), Aicardi-Goutières syndrome (AGS), and stimulator of IFN genes-associated vasculopathy with onset in infancy (SAVI). The involvement of STING in these diseases points to an unmet need for the development of agents that inhibit STING signaling. Here, we report that endogenously formed nitro-fatty acids can covalently modify STING by nitro-alkylation. These nitro-alkylations inhibit STING palmitoylation, STING signaling, and subsequently, the release of type I IFN in both human and murine cells. Furthermore, treatment with nitro-fatty acids was sufficient to inhibit production of type I IFN in fibroblasts derived from SAVI patients with a gain-of-function mutation in STING. In conclusion, we have identified nitro-fatty acids as endogenously formed inhibitors of STING signaling and propose for these lipids to be considered in the treatment of STING-dependent inflammatory diseases.


Assuntos
Ácidos Graxos/metabolismo , Herpes Simples/metabolismo , Herpesvirus Humano 2/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Animais , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/metabolismo , Doenças Autoimunes do Sistema Nervoso/patologia , Herpes Simples/genética , Herpes Simples/patologia , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Lipoilação , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/metabolismo , Malformações do Sistema Nervoso/patologia , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...